Impact Printing: Gramazio Kohler Research

Location:  ETH Zurich
Year:  2021-2024
​Research: Gramazio Kohler Research

 

 

Source: https://gramaziokohler.arch.ethz.ch/web/e/forschung/451.html

Impact printing is an innovative robotic construction method that creates full-scale, freeform structures using a custom earth-based material. Unlike traditional layer-based 3D printing, it employs high-velocity deposition, allowing for interlayer bonding at speeds of up to 10 meters per second. The environmentally friendly material consists mainly of locally sourced secondary materials with minimal mineral admixtures.

Currently, prototypes are being developed at ETH Zurich’s Robotic Fabrication Laboratory, with plans to integrate this technology into the HEAP autonomous excavator. The research also focuses on developing a digital design and construction strategy, utilizing advanced computational design and sensing methods. This work aims to enhance sustainable, mobile robotic construction, leading to groundbreaking techniques in the design and manufacturing of earthen structures.

Video

 

Source: https://www.research-collection.ethz.ch/handle/20.500.11850/668921

The diagram displays different concepts of earth material fabrication methods.

Left: ‘throwing’ technique used during Remote Material Deposition in 2014, Middle:‘pressing’ technique used during Clay Rotunda in 2021,  Right: ‘shooting’ technique currently investigated during Impact Printed Structures.

Source: https://www.research-collection.ethz.ch/handle/20.500.11850/668921

The diagram above illustrates the ideal overlap between each deposited component.

Source: https://www.research-collection.ethz.ch/handle/20.500.11850/668921

The photo above shows the process of printing a wall with a window embedded.