Déchelette Architecture: Quatre Cheminées

 

The project located in Boulogne-Billancourt in the Parisian suburbs, involves a building with eight social housing units, a caretaker’s lodge, and a shop on the ground floor, with a raw earth facade on the street side, a stone base and a wooden facade on the garden side. It is driven by a desire for restraint in design and the use of natural, bio-sourced, and local materials without ever losing sight of comfort for the occupants.

 

 

The building rises on five levels including a ground floor, four floors of housing and a green roof. It is structured around a central circulation core including an elevator and a staircase serving all levels. The search for optimization, transversality and independence of spaces guided our design.

The façade at street level is made of raw earth blocks, thus following the precepts of the “cradle to cradle” concept based on two principles: zero pollution and 100% reusability. The rammed earth used in the project comes from local sources, specifically from the excavation of the Greater Paris metro. This reduces carbon emissions from transportation and follows the circular economy principle.

 

 

 

Rammed earth bricks are prefabricated , differing from the traditional on-site method. This technique speeds up construction and ensures consistency and quality control, and  offers flexible installation in complex urban settings. Rammed earth bricks are placed on a stone base ensures both structural integrity and environmental sustainability.

Location: Boulogne-Billancourt, France

Completion: 2023

Project Area: 350 m2

Budget: €1,700,000 excluding VAT

Architect(s): Déchelette Architecture

REFERENCES

https://www.dechelette-architecture.com/quatre-cheminees/

https://europe40under40.com/project/17-rue-des-4-cheminees-2023-emmanuelle-dechelette-boulogne-billancourt-france/

https://www.boulognebillancourt.com/information-transversale/actualites/le-plus-haut-batiment-en-beton-de-chanvre-a-ete-construit-rue-de-bellevue-2996

https://www.facebook.com/dechelettearchitecture/?locale=ms_MY

 

Nandi House, Fino Lozano/Moro Taller de Arquitectura

Nandi House / Fino Lozano + Moro Taller de Arquitectura - Image 1 of 25
Photograph by Rafael Palacios Macias

Located in the town of San Jose de Garcia in Michoacan, Mexico, Casa Nandi is a collaborative project between architect Fino Lozano and the firm Moro Taller de Arquitectura. This two-story residence is designed to blend with its natural environment while offering views of the landscape. The home employs rammed-earth construction techniques combined with concrete elements such as casting, creating a balance between traditional and modern building methods. The design aims to respect the local context while providing a functional and aesthetic living space.

Architects: Fino Lozano, Moro Taller de Arquitectura

Area: 1345 ft²

Year Built: 2022

City/State: San Jose De Garcia, Michoacan

Country: Mexico

By making the most of its orientation to create a bright, intimate space, the residence also emphasizes the simplicity of its surroundings. Its natural ventilation which is derived from its forms, creates moments of release within the home that allow for contemplation of not just the environment but of self-embracing elements of harmony and tranquility for the inhabitants.

Nandi House / Fino Lozano + Moro Taller de Arquitectura - Image 20 of 25
Ground Floor Plan Courtesy of Fino Lozano and Moro Taller de Arquitectura
Nandi House / Fino Lozano + Moro Taller de Arquitectura - Image 23 of 25
Section Render Courtesy of Fino Lozano and Moro Taller de Arquitectura

Constructed upon pine wood beams, the building also features handcrafted mud bricks supporting a concrete slab that indeed displays the underlying natural elements for an effortlessly elegant yet raw appearance. As previously indicated, the walls that make up the house are a combination of modern concrete techniques and traditional rammed earth, providing a juxtaposition that emphasizes how timeless architectural building practices can be. This combination offers acoustic and thermal insulation in addition to structural support.

Nandi House / Fino Lozano + Moro Taller de Arquitectura - Image 17 of 25
Photograph by Rafael Palacios Macias
Nandi House / Fino Lozano + Moro Taller de Arquitectura - Exterior Photography
Photograph by Rafael Palacios Macias

Every material used in the home is on display, allowing each texture and color to contribute to a visual experience that authentically reflects the surrounding landscape. Rammed earth construction is popular in conveying the essence of Mexican architecture and Casa Nandi is a great example due to its rosy pink walls of local mud, creating a seamless connection between the home and its environment. “Casa Nandi, in that spirit, stands out yet settles in the place it belongs to” (Zohra Kahn).

Nandi House / Fino Lozano + Moro Taller de Arquitectura - Interior Photography, Kitchen, Beam, Facade
Photograph by Rafael Palacios Macias

References:

Caballero, Pilar. “Nandi House / Fino Lozano + Moro Taller de Arquitectura.” ArchDaily, ArchDaily, 7 June 2024, www.archdaily.com/1017433/nandi-house-fino-lozano-plus-moro-taller-de-arquitectura?ad_medium=gallery.

Khan, Zohra. “Casa Nandi in Its Muted Rammed Earth and Concrete Form Stands out yet Settles In.” STIRworld, STIRworld.com, 15 July 2024, www.stirworld.com/see-features-casa-nandi-in-its-muted-rammed-earth-and-concrete-form-stands-out-yet-settles-in.

The Kiln Tower for the Brickworks Museum

Boltshauser Architekten, founded by Roger Boltshauser in 1996, is a Zurich-based firm known for its focus on materiality, craftsmanship, and sustainable practices. Roger Boltshauser, a graduate of the Swiss Federal Institute of Technology (ETH Zurich), blends natural materials like brick and clay with modernist and vernacular traditions. His architecture reflects an environmental sensitivity, using low-impact materials to create buildings that are deeply connected to their natural surroundings.

© Kuster Frey, Zurich

The Tower for the Brickworks Museum in Cham, Switzerland, is a striking vertical addition to a museum dedicated to the region’s brickmaking heritage. The brickworks, which operates the museum, is the last surviving handmade brickworks in German-speaking Switzerland. The site includes a kiln, a drying shed, a clay pit biotope, residential buildings, and a museum, all tied to the region’s industrial past. The tower, which was completed in 2017, stands approximately 10 meters high, 13 meters deep, and 4 meters wide. Its tapered form and black steel entrance portal evoke a sense of transcendence, reminiscent of the ancient nuraghi of Sardinia or Oman’s tower tombs.

This unconventional structure won the prestigious Detail Award in 2022. It functions as an exhibition space, a working kiln, and an observation point, allowing visitors to experience the historical and material richness of the site while offering panoramic views from its rooftop platform. More than just an architectural addition, the tower is also an experimental exhibit, showcasing the innovative potential of rammed earth construction.

Situation plan – Graphic © Boltshauser Architekten

 

Floor plan, section, view, axonometry – Graphic © Boltshauser Architekten

The tower’s uniqueness lies in its method of construction using rammed earth, an ancient technique that has seen a revival in sustainable architecture. Designed in collaboration with students from the Technical University of Munich and ETH Zurich, under the expert guidance of Roger Boltshauser, the project also served as a hands-on self-build educational opportunity. The earthen modules were made of a mixture of fat clay and demolition rubble, as preparing loam on-site would have been too time-consuming.

One of the key innovations of this structure is its use of prestressed earth. Prefabricated rammed earth blocks were compressed on-site and stacked, each resting on a wooden plate that facilitated transport and construction. The integration of these base plates into the wall structure, along with grooves for tension cables, added strength and stability to the building. A weatherboard on each plate protects the earth from erosion and showcases the joinery principles. The use of horizontal supports made of trass lime mortar further reinforces the structure against erosion.

Prestressing earthen walls is a challenging process due to material creep and shrinkage, which can loosen the tension over time. To mitigate this, the blocks used in Cham were dried for a year, and additional steel springs in the tendons maintained constant pressure. Measurements indicate that the stability and hardness of the rammed earth increase under this pressure. The steel tendons, aside from their structural role, also add a visual rhythm to the compact tower, turning the technical necessity into an aesthetic element.

© Kuster Frey, Zurich

The tower is a testament to sustainable building practices. Its use of rammed earth—a material that can be recycled or reused—ties the building into the circular economy. The structure was built with the understanding that it would be dismantled after ten years. When this occurs, the rammed earth blocks can be easily reused, closing the loop in material usage and reducing waste. Compared to traditional concrete or brick construction, this method can result in a 40% reduction in embodied energy.

Moreover, the tower’s design aligns with the broader goals of reducing energy-intensive materials like concrete. In Switzerland, over 60 million tons of clay and earth are excavated annually, most of which is discarded in landfills. By using this resource in construction, the project makes a significant contribution to more sustainable building methods.

© Kuster Frey, Zurich

The Tower for the Brickworks Museum exemplifies Boltshauser Architekten’s commitment to materiality, sustainability, and craft. More than just a structure, it is an experiment in how traditional building techniques like rammed earth can be adapted for modern, sustainable architecture. The tower honors the industrial heritage of the brickworks while also embracing innovative methods, such as prestressed earthen construction, to meet modern engineering challenges.

Its combination of robust materiality and minimalist form inspires reflection on the connection between craft, place, and design. The structure also demonstrates how architecture can be part of a circular economy, with its materials poised to be recycled after its decade-long lifespan. Boltshauser’s work here stands as a reminder that thoughtful, context-driven architecture can not only tell a story through materials but also push the boundaries of what is possible in sustainable building practices.

References:

Boltshauser Architekten. (2022, March 18). Kiln Tower for the Brickworks Museum • Boltshauser Architekten AG. Boltshauser Architekten AG. https://boltshauser.info/en/projekt/ofenturm-fuer-das-ziegelei-museum/

Caballero, P. (2024, July 2). Kiln Tower for the Brickworks Museum / Boltshauser Architekten. ArchDaily. https://www.archdaily.com/972419/kiln-tower-for-the-brickworks-museum-boltshauser-architekten

Kiln Tower for the Brickworks Museum | Boltshauser Architekten | Archello. (n.d.). Archello. https://archello.com/project/kiln-tower-for-the-brickworks-museum

Walter, E. (2022, November 18). Kiln Tower in Cham. Detail. https://www.detail.de/de_en/ofenturm-in-cham?srsltid=AfmBOorkvFZgToXvWDRFMWlyDg4O5_SNjfN_gjXvs0bh4DE-C3lRFW5m

FRANÇOIS COINTERAUX: THE ARCHITECT OF THE ‘AGRICULTURAL PROLETARIAT’

Frontispieces to Cointeraux’s École d’architecture rurale (second edition, 1793). Façade of a ‘house of a decorated rammed earth house’ and the ‘same house made from the hands of a worker’.

FRANÇOIS COINTERAUX: THE ARCHITECT OF THE ‘AGRICULTURAL PROLETARIAT’ is an essay by Anja Segmüller who writes on the history of the French Architect Francois Cointeraux who is known for his focused attention on “the possibilities of ‘pisé’ (rammed earth) as a construction technique and to teaching the agricultural working class how to construct their own cost-effective, fire-resistant, and ‘dignified’ dwellings, founding several educational institutions”.

Read the essay at Drawing Matter.

Renzo Piano’s Emergency Children Surgery Center in Entebbe, Uganda

Renzo Piano is an Italian architect that has received numerous awards and nominations for his work, mostly qualified as “high-tech architecture”, a type of modern architecture that dares to innovate and defy norms. (1) His most famous design is the Centre Pompidou of Paris in which he works with high tech and sustainability through an emphasis on structural and technological elements. (1)

Vittoriano Rastelli / Corbis via Getty Images

Renzo Piano’s involvement in creating an Emergency children’s surgery center out of raw earth in Uganda continues that legacy of surpassing the norm. In this project, Piano contributed with EMERGENCY, a non-profit dedicated to offering complimentary, high-quality medical services to those in need (2). Such a partnership between visionary Renzo Piano and EMERGENCY therefore pushed for a project that guaranteed quality of biomedical devices, quality of building and a quality of life for those in the center(3).

Images courtesy of Renzo Piano Building Workshop & Studio TAMassociati, Milan Ingegneria

While the facility currently hosts 72 beds, a diagnostic centre, a laboratory for analysis, a blood bank, a pharmacy, as well auxiliary services such as a canteen and a laundry, it also hosts a healing and playful environment (2). In this center, play becomes part of a healing process as colorful walls populate the facility illuminated with the center’s large windows offering a view of either the heart of the complex: a large garden, or the site, which in total contain 350 trees planted (5).  

Image courtesy of Renzo Piano Building Workshop & Studio TAMassociati, Milan Ingegneria
The Center’s Courtyard. Image courtesy of Renzo Piano Building Workshop & Studio TAMassociati, Milan Ingegneria

 

 

 

 

 

 

 

 

 

 

Center’s Floorplan. Courtesy of ArchDaily.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this project, Piano and his team championed local tradition of building with earthen materials while also fusing it with his characteristic modern architecture seeking to build sustainably and efficiently.

Image courtesy of Renzo Piano Building Workshop & Studio TAMassociati, Milan Ingegneria

 

 

 

 

 

 

 

 

In a complex process of trial and error, architects and engineers of the Milan Ingegneria team researched theories and traditions in the region of earthen architecture, testing out experiments in the laboratory and on the construction site, to eventually come across the most performing mix for the project. The final mix was composed of: silty clay from the site, dried and cleaned in order to remove organic materials; aggregate to give the material compressive strength; Mapesoil, an establishing agent used to solidify the soil; a small amount of cement to stimulate the hardening process; inch-long (2.4 cm) polypropylene fibers to prevent tiny cracks from forming as the material shrinks; a fluidizing agent which made the mix easier to work with; and finally, a clear xylan-based coating applied to the outer surface of the wall to create a water-resistant layer stopping moisture from being absorbed or retained.(6)

 

 

 

 

 

 

A whole process of trial and error                                                                                                           Images courtesy of Renzo Piano Building Workshop & Studio TAMassociati, Milan Ingegneri

 

 

 

 

 

 

This rammed earth technique ensures proper humidity and temperature control(4), inducing thermal inertia. 

Image courtesy of Renzo Piano Building Workshop & Studio TAMassociati, Milan Ingegneria

This project by Renzo Piano is part of a broader movement that reimagines earthen architecture as a viable and valuable component of our modern world. It challenges the notion that traditional materials belong only to the past, showing how earth-based construction can play a key role in creating a more sustainable future. By integrating innovative techniques with time-honored methods, this approach not only honors architectural heritage but also addresses the urgent environmental needs of today, offering a path forward in the global shift towards more eco-conscious building practices.

Location: Entebbe, Uganda

Completion Date: 2021 

Project Owner: EMERGENCY NGO Onlus

Architects: Renzo Piano Building Workshop & Studio TAMassociati

Design team: RPBW – G.Grandi (partner in charge), P.Carrera, A.Peschiera, D.Piano, Z.Sawaya and D. Ardant; F.Cappellini, I.Corsaro, D.Lange, F.Terranova (models) – TAMassociati – R.Pantaleo, M.Lepore, S.Sfriso, V.Milan, L.Candelpergher, E. Vianello, M.Gerardi – EMERGENCY Field Operations Department, Building Division – Roberto Crestan, Carlo Maisano.

Consultants: Milan Ingegneria (structure); Prisma Engineering (MEP); Franco and Simona Giorgetta (landscape); GAE Engineering (fire consultant); J&A Consultants

References:

(1)”The Centre Georges Pompidou by Richard Rogers & Renzo Piano.” ArchEyes, www.archeyes.com/the-centre-georges-pompidou-by-richard-rogers-renzo-piano/.

(2)”Emergency USA – A Surgical Center in Uganda.” Emergency USA, www.emergencyusa.org/?doing_wp_cron=1727479427.1156270503997802734375.

(3)”Emergency Children’s Surgery Center.” Renzo Piano Building Workshop, www.rpbw.com/project/emergency-childrens-surgery-center.

(4)”Hospital Quirúrgico Infantil, Entebbe.” Arquitectura Viva, www.arquitecturaviva.com/works/hospital-quirurgico-infantil-entebbe.

(5)”Centre of Excellence in Paediatric Surgery.” Emergency USA, www.emergencyusa.org/prj/uganda/centre-of-excellence-in-paediatric-surgery/.

(6)”Children’s Surgical Hospital: A Scandalously Beautiful Dream.” The Plan, www.theplan.it/eng/whats_on/children-s-surgical-hospital-a-scandalously-beautiful-dream.

Preschool of Aknaibich

 

 

Location: Aknaibich, Morroco

Completion: 2014

Project Area:  55 m²

Budget: 25.000€

Architect(s): BC architects & studies + MAMOTH

The population of Aknaibich collapsed from 1266 inhabitants in 2014 to only 634 in 2013. Of which the majority were young students migrating to the center of Agadir 30km away, to study. This rural-urban trend  exacerbates not only the physically abandonment of Aknaibich but the cultural abandonment of traditional earthen building. Returning migrants opt for the faster and easier concrete construction to build their village homes, scattering the village with exposed rebar.

BC Architects proposes a strategic combination of traditional vernacular seismically maximized by innovative technologies, built by the community, in an architecture that might be called a new, contemporary vernacular. The vernacular embraces the humanity of Aknaibich, it’s logical and thoughtful response to the communities needs. The utilization of local typologies and materials allows bioclimatic functioning. A dialogue is created with the existing concrete school on site, leaving it up to the teachers and children to make their own perceptions of the juxtaposing materiality. The school complex further visualized the importance of education in the small village.

Plan
Section

Adobe Brick + Qued Stone

Gravel earth, excavated from the site, and clayey soil, from the river bank of Qued Souss are made into sun-dried soil bricks. The process of forming the earth into a brick is only ever done in the village by a single craftsmen. Stones found at the same river bed are traditionally used for foundations, for its strength and durability.  These stones are processed for an even wall surface.

Thomas Joos

Cement ‘Where it is Necessary’

To resolve seismic challenges of traditional earthen buildings, cement is strategically placed, in ring beams connected by reinforcement bars and the foundation, to guarantee stability. In replacement to local wood, which is poor in tension, normally used in Moroccan construction. At the south facade, these ring beams become small platforms or niches. At the north facade, the ring beams become openings to the interior courtyard.

Rammed Earth ‘Leh’

Rammed earth, ‘Leh’ in Berber, walls are using for enclosure walls.

‘Tamelass’ + ‘ Nouss-Nouss’

For protection against weather and impact, a rendering of straw, sand, and earth is used to finish exterior adobe walls. In interior spaces, a finer and more worked plaster, made of sieved clayey soil and gypsum called ‘Nouss-nouss,’ or half-half in Berber. The material reflects light well, luminating the classroom.

Ratan

Moroccan carpenters weave in between wooden beams in order to create a flat roof and a pergola. Overlaid on a lattice of wooden beams, the ratan allows for hot air to rise and escape the interior space. Then a thick, heavy earthen flat roof, additionally insulated by 10cm of cork, slows down the heating process from the exterior.

The interior courtyard consists of a playground as well, protected from the sun by a pergola covered by ratan. This outdoor space creates enough shade that it doubles as a possible outdoor classroom.

 

 

 

 

 

 

 

 

 

References

Matthews Residence: Exploring Modern Adobe Architecture in the Desert

Will Bruder is an American architect known for his innovative use of materials and site-specific designs. Born in Milwaukee, Wisconsin, in 1946, Bruder’s background spans art, sculpture, and architecture. He studied at the University of Wisconsin-Milwaukee, earning a degree in Fine Arts, and later apprenticed under visionary architect Paolo Soleri, which significantly influenced his work in the desert Southwest.

Bruder’s work focuses on creating architecture that integrates with the natural environment, using innovative material choices and architectural forms. His approach prioritizes materials that connect the building to its surroundings, as seen in his use of adobe for the Matthews Residence.

The Matthews Residence, designed by Will Bruder, was built between 1979 and 1980 and received the 1983 Environmental Excellence Award for its innovative design. The residence is a 2,800-square-foot adobe home. The primary material of this residence is adobe brick, a traditional earth material made from sun-dried bricks, which is able to blend into the natural landscape. Adobe also offers excellent thermal properties, helping regulate temperature in the desert climate.

Inspired by the traditional Southwestern courtyard house, the design features curving adobe walls, strategically shaped to reduce exposure to the intense Arizona sun. The house spans a large double cul-de-sac lot in a suburban area of west Phoenix.

The layout creates a dynamic interplay between expansive and more intimate spaces, enhanced by the flowing geometry of its curves. The design’s sense of light, compression, and openness is carefully crafted, with a long skylight running from the entrance, introducing a play of light that highlights the contrast between rougher materials like adobe and concrete floors and the more refined details of oak and galvanized steel.

A key inspiring aspect is how Bruder masterfully combines adobe with modern materials like steel and wood, which creates a dynamic contrast between natural, traditional, and modern industrial materials. This combination enriches the architectural narrative by blending the old with the new. The combination of modern architectural design with natural, sustainable materials makes the Matthews Residence a source of inspiration for architects interested in sustainability and regionalism.

Interestingly, this is the only known Bruder house constructed from adobe, making it a rare and distinctive project. The way adobe is used in this design adds to its uniqueness, and it remains one of the most intriguing examples of Bruder’s residential work.

Matthews ResidenceCitations:

AZ Architecture. “Matthews Residence – Will Bruder Architect – Adobe.” AZ Architecture, https://azarchitecture.com/architecture-guide/matthews-residence-will-bruder-architect-adobe/. Accessed 23 September 2024.

USModernist. “Will Bruder.” USModernist, https://usmodernist.org/bruder.htm. Accessed 23 September 2024.

Rael, Ronald. Earth Architecture. Princeton Architectural Press, 2009, pp. 120-121.

 

Taos Pueblo

 

Pueblo de Taos
© Edmondo Gnerre
https://whc.unesco.org/en/list/492/gallery/

Taos Pueblo is an ancient, occupied multi-generational community in Northern New Mexico. “Pueblo” refers to both the physical buildings and community (stylized “pueblo”) and the native people of those communities (stylized “Pueblo”). The people are also known as Puebloans, or Pueblo peoples, and are native to the Southwestern United States (New Mexico, Arizona, Texas). They share a common culture, including food and agriculture, history, traditions, and religious practices. Aside from Taos, inhabited pueblos include San Ildefonso, Acoma, Zuni, and Hopi.

Taos Pueblo
© OUR PLACE The World Heritage Collection
Author: David Muench
https://whc.unesco.org/en/list/492/gallery/

The most recognizable feature of the Taos Pueblo community are the multi-story, red clay and adobe homes and community buildings. They span both sides of the Sacred Blue Lake/Rio Pueblo de Taos (a tributary of the Rio Grande) which is also the population’s only source of water. The community has been continuously occupied for over 1000 years, likely originally built between 1000 and 1450 C.E. It is both the longest continuously inhabited community in the United States, and the largest of the pueblos.

Taos Pueblo
© OUR PLACE The World Heritage Collection
Author: David Muench
https://whc.unesco.org/en/list/492/gallery/

The structures are built in terraced tiers, extending out as they descend toward the ground, and a height of five stories at maximum. “The property includes the walled village with two multi-storey adobe structures, seven kivas (underground ceremonial chambers), the ruins of a previous pueblo, four middens, a track for traditional foot-races, the ruins of the first church built in the 1600s and the present-day San Geronimo Catholic Church” UNESCO. The community sits at the base of the Taos mountains, the Sangre de Cristo range of the Rocky Mountains

old-taos-images-historic-museum-of-taos-015
https://taospueblo.com/history/

Spanish explorers arrived in 1540 C.E. and originally believed the community to be one of the Seven Golden Cities of Cibola, a legend of Aztec mythology pursued by Coronado, among others. The miccaceous mineral (micca) found in the clay that is used to re-mud the homes every year shimmers in the light, seemingly like gold.

It is an occupied, inhabited, living community, with dwellings passed on within the family from eldest son to eldest son throughout generations. Taos Pueblo is recognized as both a U.S. National Historic Landmark and a UNESCO World Heritage Site. Visitors are welcome, but as an occupied space, access is limited to businesses and tourist centers, and photography of certain parts of the physical community and people is limited. The tribal land encompasses 95,000 acres with about 4,500 inhabitants. Approximately 150 people lived in the historic pueblo adobe dwellings as of 2010.

old-taos-images-historic-museum-of-taos-008
https://taospueblo.com/history/
old-taos-images-historic-museum-of-taos-003
https://taospueblo.com/history/
old-taos-images-historic-museum-of-taos-002
https://taospueblo.com/history/
Google Earth 3D aerial of Taos Pueblo buildings
Google Earth aerial of Taos Pueblo land

REFERENCES

Shimba: Manhattan of the Desert

Yemen is located on the southern coast of the Arabian Peninsula, and the city of Shibam is renowned for its densely packed mudbrick buildings. These high-rise structures were built in close proximity as a defensive measure against Bedouin raids.

Shibam’s buildings are multistory (up to 11 stories), and the city is considered one of the earliest examples of vertical urban planning. The towers range between 5 to 11 stories, made primarily of adobe bricks reinforced with wooden beams.

The city is enclosed by a protective wall, with two gates serving as entry points. The compact clusters of five- to eight-story buildings create a unique skyline, with some homes connected by elevated corridors. These corridors allow residents to move between houses quickly, providing a means to defend against attackers. The buildings feature wooden window frames set into mud-plastered walls, with many windows carved into elegant arches. While Shibam’s history dates back to the third century, most of the existing structures were built in the 16th century. Regular maintenance is required for these earthen buildings, as the walls must be replastered periodically to combat erosion from wind and rain. And the roofs and the exterior of the mud towers had sustained the most damage.

 

The bricks used in Shibam’s buildings gradually decrease in size on the upper floors, resulting in thinner walls as the structure rises and giving the buildings a trapezoidal shape. This design helps to reduce the load on the lower floors, enhancing the overall stability and strength of the buildings. Typically, each building is occupied by a single family, with living spaces located from the third floor upwards. The first and second floors are often designated for food storage and livestock stables, allowing families to keep cattle inside during periods when the town was under siege.

Citations:

 

  • UNESCO World Heritage Centre. “Old Walled City of Shibam.” Accessed September 2024. https://whc.unesco.org/en/list/192.
  • Al Sayyad, Nezar. “The Architecture of Mud: Construction and Repair Technology in the Hadhramaut Region of Yemen.” Environmental Design: Journal of the Islamic Environmental Design Research Centre, 1988.
  • Serageldin, Ismail. Traditional Architecture: Shibam and the Hadramut Region. London: Academy Editions, 1991.
  • Alhussein, Redhwan, and Tetsuya Kusuda. “Performance and Response of Historical Earth Buildings to Flood Events in Wadi Hadramaut, Yemen.” Built Heritage, vol. 5, no. 1, 2021, https://doi.org/10.1186/s43238-021-00044-8. Accessed 23 September 2024.
  • DaliySabath. “Shibam: Yemen’s ancient ‘Manhattan of the Desert'”. Agencies. https://www.nationalgeographic.com/travel/article/shibam-mud-skyscraper-yemen. December 17, 2020.

Centinela Chapel

The front facade of Centinela Chapel captured at dusk. (César Béjar via Arch Daily)

Architect: Estudio ALA

Location: Jalisco, Mexico

Year of Completion: 2014

Area: 480 square meters

Centinela Chapel was designed by Estudio ALA based in Gaudalajara, Mexico. The studio was established in 2012 by Luis Enrique Flores and Armida Fernandez. Flores received his undergraduate education from Universidad de Guadalajara, and a Master’s in Landscape Architecture from the Harvard GSD.  Fernandez began her education in industrial design at Instituto Tecnológico y de Estudio Superiores de Monterrey before continuing on to a Master of Design Studies at the GSD.  Their view of the architectural discipline is as interdisciplinary as their educational backgrounds might suggest,  approaching each project with a holistic mindset that in their words is rooted in “[the time, the history, the place, and the people]”[1]. You can read more about their approach in this interview with the Architectural League of New York.

These design imperatives are evident in Centinela Chapel. The 480 square meter building, a small chapel located inside of a Tequila production facility in Jalisco, sits in a verdant landscape with broad views to a pond and adjacent fields [2]. The chapel consists of two rectilinear volumes, open to the air and sky. Used primarily by the facility’s workers, the open plan allows great flexibility and large capacity with a very small building, all while elegantly connecting to the landscape.

Plan of Centinela Chapel (via Arch Daily)

Adobe bricks and pink terracotta tiles are the dominant material expression of the Chapel. However, the primary structural system is in fact steel, which allows for large span openings,  and a flexible open plan with wide views. Although the adobe bricks incorporated here are not structural they do play an important role of tying the Chapel to its site, by enhancing thermal comfort, and relating the building to local architecture. Estudio ALA puts great emphasis on the materials as means of connecting a project to its surroundings [3], and the adobe walls undoubtedly achieve this at Centinela Chapel. As a whole the building is an interesting case study of a hybrid material composition, where adobe is the protagonist, but has been enhanced beyond its traditional formal limits with the introduction of a steel structure. The project demonstrates that even where traditional adobe construction may not be feasible for the given form the material can still be a critical part of a building’s identity given its cultural, aesthetic, and climatic significance.

A construction detail illuminated the relationship between steel structure, and adobe bricks (via Arch Daily)

 

The interior of the chapel. The unusually large spans and flexible plan, and openess to the air and sky are evident (César Béjar via Arch Daily).

1. Estudio ala. Estudio ALA. (n.d.-a). https://estudioala.com/

2. Arch Daily. (2015, December 29). Centinela Chapel / Estudio Ala. ArchDaily. https://www.archdaily.com/779489/centinela-chapel-estudio-ala

3. Be critical, adapt constantly, and connect. The Architectural League of New  York. (2024, July 30). https://archleague.org/article/be-critical-adapt- constantly-and-connect/